.. _Build NeurEco Parametric Frequency Sweep model with the Python API: Build NeurEco Parametric Frequency Sweep model with the Python API =================================================================== To build a NeurEco **Parametric Frequency Sweep** model in Python API, import **NeurEcoFrequential** library: .. code-block:: python from NeurEco import NeurEcoFrequential as Frequential Initialize a NeurEco object to handle the **Parametric Frequency Sweep** problem: .. code-block:: python model = Frequential.PFS() Call method **build** with the parameters set for the problem under consideration: .. code-block:: python model.build(input_data, output_data, validation_input_data=None, validation_output_data=None, valid_percentage=None, test_input_data=None, test_output_data=None, write_model_to="", checkpoint_address="", compressed_space_size=5, min_number_of_enrichments=100, max_number_of_enrichments=200, unsuccessful_enrichments_threshold=4, enrichment_rate=0.2, resume=False ) :input_data: NumPy array, dtype=float64, required: NumPy array of the training input data. The shape is :math:`(m,\ n)`, where :math:`m` is the number of samples, and :math:`n` is the number of input variables :output_data: NumPy array, dtype=complex128, required: NumPy array of training target data. The shape is :math:`(m,\ n)` where :math:`m` is the number of samples, and :math:`n` is the number of output variables. :validation_input_data: NumPy array, dtype=float64, optional: Numpy array of validation input data. The shape is :math:`(m,\ n)` where :math:`m` is the number of samples, and :math:`n` is the number of input variables. :validation_output_data: NumPy array, dtype=complexe, optional: Numpy array of validation target data. The shape is :math:`(m,\ n)` where :math:`m` is the number of samples, and :math:`n` is the number of output variables. :test_input_data: NumPy array, dtype=float64, optional: Numpy array of test input data. The shape is :math:`(m,\ n)` where :math:`m` is the number of samples, and :math:`n` is the number of input variables. :test_output_data: NumPy array, dtype=complexe, optional: Numpy array of test target data. The shape is :math:`(m,\ n)` where :math:`m` is the number of samples, and :math:`n` is the number of output variables. :write_model_to: string, optional, default is None: path on the disk where to save the model :valid_percentage: float, optional, default is :math:`33.33`: Percentage of the data that NeurEco will select to use as validation data. The minimum accepted value is 1 (1%). The maximum accepted value is :math:`50` (50%). Ignored unless validation data is None. :checkpoint_address: string, optional, default is "": the path where the checkpoint model will be saved. The checkpoint model is used for resuming the build of a model, or for choosing an intermediate network with less topological optimization steps. :reduced_space_size: int: the dimension of the reduced space (outputs) used to train the model :min_number_of_enrichments: int: the minimum number of enrichments :max_number_of_enrichments: int: the maximum number of enrichments :unsuccessful_enrichments_threshold: int: maximum number of consecutive unsuccessful enrichment steps (no imrovement of validation error) before stopping the training process :enrichment_rate: float: tunes the quantity of new parameters added at every enrichment step (has to be included between 0 and 1) :resume: Bool, default=False: Used to resume an interrupted build :return: build_status: int: 0 if build is successful, other if otherwise For more information on the data format, see :std:ref:`Data preparation for NeurEco Parametric Frequency Sweep python`. .. _Data normalization for Parametric Frequency Sweep Python: Data normalization for Parametric Frequency Sweep ----------------------------------------------------- .. include:: ../CommonPartsPFS/NormalizationPFS.rst